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Overview

The problem of community detection is to partition a network into clusters of nodes (communities)

with similar connection patterns. Specific examples include finding like-minded people in a social

network and discovering the hierarchical relationships in organizations from observed behavior.

A major limitation of the current analysis of community detection is that it is relevant only to net-

works exhibiting high levels of homogeneity or symmetry. While the theory provides initial guide-

lines for howmuch data one needs to collect, it fails to describe the performance one expects to see

in practice. Particularly in settings where individuals belong to multiple communities, there is high

variability in the size of the communities, and there is additional covariate information.

The contribution of thiswork is to study amuchbroader class of networkmodels inwhich there can

be high variability in the sizes and behaviors of the different communities. Our analysis shows that

the performance in these models can be described in terms of a matrix of the effective signal-to-

noise ratios (SNRs) that provides a geometrical representation of relationships between the com-

munities. This analysis motivates newmethodology for a variety of state-of-the-art algorithms, in-

cluding spectral clustering, belief propagation, and approximate message passing.

Stochastic Block Model (SBM)

The SBM is a probabilistic model for a network with n nodes, each of which belongs to one of k
communities [Holland & Leinhardt 1983].

The community label of node i is denoted by binary vectorXi ∈ {0, 1}k with one nonzero entry

Xi
iid∼ P = (p1, · · · , pk).

The network is represented by an adjacency matrixG ∈ {0, 1}n×n withGij = 1 if there is an
edge between nodes i and j andGij = 0 otherwise. The conditional probability of edges is
described by affinity matrixQ ∈ [0, 1]k×k.

Pr{Gij = 1|X1, . . . Xn} = XT
i QXj.

The degree of a node is the number of edges connected to the node. An SBM is degree balanced

if the expected degree of a node is independent of its community label.

The goal of community detection is to recover the labelsX = [X1, . . . , Xn] from the observed

networkG. The SBM parameters (P, Q) are often unknown and also need to be estimated.
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Motivating Questions

What does the geometry of the community structure reveal about the success of recovering

community memberships?

Is there a significant performance gap between existing approaches (e.g., spectral clustering,

message passing, or semi-definite programming) and optimal but computationally intractable

methods requiring brute-force search?

Community Detection

Community detection in a graph with adjacency matrixG, can be studied from two perspectives:

Geometry of the eigenvectors: The eigen-decomposition of an adjacency matrix,G, is often

used to identify the community structure of the network. We study the geometry of the

eigenvectors and its relation to community detection.

Information-theoretic analysis of the SBM: We can provide a theoretical bound to themean

squared error (MSE) in estimating community membership of the nodes. The bound is obtained

by studying the relationship between the problem of community detection and the relatively

simpler 'signal-plus-noise problem.'

Eigen-decomposition of AdjacencyMatrix

The eigenvalue spectrum ofG typically consists of a dense bulk of closely spaced eigenvalues,

plus k outlying eigenvalues separated from the bulk by a significant gap

The k eigenvectors corresponding to these outliers contain information about the large-scale

structure of the network: the largest eigenvector sorts vertices according to their degree, while

the remaining (k − 1) outlying eigenvectors are correlated with the communities

When degree distribution is uninformative, spectral methods for community detection cluster

on V , the n × (k − 1)matrix composed of the 2nd to kth largest eigenvectors

Plotting V or, more commonly, a transformed version of V can reveal separable point clusters

(i.e., communities), as shown in Figures 1a, 1b. Each plot is a sample of a three-community SBM

with respective (Q, P ). The black dots represent the expected cluster centers, namely

E(G|X) = XT QX .
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(a) P = (1/3, 1/3, 1/3)
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(b) P = (0.6, 0.3, 0.1)
Figure 1: Examples of transformed eigenvectors Vt for two networks

In Figures 1a, 1b we plot the transformed version (i.e., Vt) of V , defined as

Vt = P +
√

nBV where BBT = diag(P ) − PP T . (1)

Notice the resemblance between Vt and a Gaussian mixture; this transformation enables

inference of the matrix SNR S under the signal-plus-noise framework

Analysis via Connection with Signal-Plus-Noise Problem

Previous work focusing on the special cases of symmetric SBMs [Deshpande et. al. 2015] and

two-community degree balanced SBMs [Lelarge andMiolane 2017] has shown that the

information-theoretic limits (i.e., the performance of optimal but possibly intractable methods)

can be characterized analytically as a function of the SBM parameters. The formulas are

described in terms of a low-dimensional `signal-plus-noise problem' of the form

Y =
√

sX + Z (2)

whereX ∼ P is a k-dimensional binary vector,Z ∼ N (0, I) is standard Gaussian noise, and s is
parameter that quantifies the signal-to-noise ratio.

Our analysis shows that a similar approach can be applied to a much broader class of SBMswith

heterogeneous community sizes and connection behaviors. The key innovation is that the scalar

signal-to-noise ratio in the signal-plus-noise problem is replaced by a k × k positive definite

matrix S, which is referred to as thematrix SNR [Reeves et. al. 2018],

Y = S1/2X + Z. (3)

Given SBM parameters (P, Q) the corresponding matrix S is found by solving a optimization

problem that requires numerical evaluation of the mutual information I(X ; Y ).
The matrix S provides a geometric representation of types of communities structures that can

(and cannot) be recovered. For example, if the difference between two entries ofX lies in the

nullspace of S, then the corresponding communities cannot be differentiated from each other.

Theoretical Threshold of Community Detection Algorithms

Performance is assessed in terms of mean-squared error of an estimator of the k × nmatrix of

community labels. Theminimum over all possible estimators is called theminimum

mean-squared error (MMSE) and is given by

MMSE(X | G) = 1
n

n∑
i=1

E
[
‖Xi − E[Xi | G]‖2

]
.

The theoretical analysis provides formulas for the asymptoticMMSE and the asymptoticMSE

of belief propagation (BP) associated with a sequence of models of increasing size. These

formulas are compared with empirical results on a network of size n = 1000.
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(a) MSE for symmetric SBMwith 3 communities and

average degree d = 30.
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(b) MSE for balanced SBMwith P = (0.6, 0.3, 0.1) and
average degree d = 30.

Figure 2: A comparison of theMMSE for degree balanced SBMs. The empirical MSE is computed using the BP

algorithm to estimate community memberships. BP is run over 100 sample graphs drawn from an SBMwith

parameters (P, Q). The x-axis is a measure of the strength of community structure.

Conclusion

Ourwork bridges and extends recent developments in statistics and information theory to provide

theoretical guarantees (MMSE) for general SBMs (e.g., asymmetric, mixedmembership).


